Practical BSE Calculations with BerkeleyGW + Octopus

Felipe H. da Jornada

Department of Physics – University of California, Berkeley and Lawrence Berkeley National Laboratory

David A. Strubbe

Department of Material Science and Engineering – Massachusetts Institute of Technology

TDDFT Benasque Workshop – Jan. 12th , 2014

#2 – Typical BSE Workflow in BerkeleyGW

#3 – Issues Unique to the BSE Code

Theory Review: Optical Absorption

No electron-hole interactions

With electron-hole interactions

Correlated electron-hole pair: $|S\rangle$

$$\varepsilon_{2}(-\mathbf{q},\omega) \propto \sum_{S} |\langle 0|\hat{v}|S\rangle|^{2} \delta[\omega - \Omega_{S}]$$

$$|S\rangle = \sum_{vc\mathbf{k}} A_{vc\mathbf{k}}^{S} |v\mathbf{k} + \mathbf{q}\rangle \otimes |c\mathbf{k}\rangle$$

Solutions of the Bethe-Salpeter equation (BSE)

Bethe Salpeter Equation (BSE)

From Prof. Tokalty's talk to BerkeleyGW:

$$L = (1 - L_0 K)^{-1} L_0$$

$$L^{-1} = L_0^{-1} - K$$

$$-L_0^{-1} = E_c - E_v - \omega$$

$$-L^{-1} = E_c - E_v + K - \omega$$

• Absorption spectrum with excitonic effects \rightarrow diagonalize BSE Hamiltonian:

 $[H]_{(vck),(v'c'k')}$ $[H] = [E_c - E_v] + [K] \leftarrow \text{dense "kernel"} \\ \leftarrow \text{diagonal} \\ \sim \text{kinetic term}$

<u>Challenge</u>: compute quasiparticle corrections and kernel matrix elements on a <u>very fine k-grid</u>!

BerkeleyGW Interpolation Scheme

BerkeleyGW solution: Interpolate QP energies and BSE kernel

Step I: Expand fine WFNs in terms of coarse WFNs

$$u_{n\mathbf{k}_{\mathrm{fi}}} = \sum_{n'} C_{n,n'}^{\mathbf{k}_{\mathrm{co}}} u_{n'\mathbf{k}_{\mathrm{co}}}$$

Step 2: Interpolate QP energies and matrix elements

$$\langle vc\mathbf{k}_{\mathrm{fi}}|K|v'c'\mathbf{k}_{\mathrm{fi}}'\rangle = \sum_{n_1,n_2,n_3,n_4} C_{c,n_1}^{\mathbf{k}_{\mathrm{co}}} C_{v,n_2}^{*\mathbf{k}_{\mathrm{co}}} C_{v',n_3}^{\mathbf{k}_{\mathrm{co}}'} C_{v',n_4}^{\mathbf{k}_{\mathrm{co}}'} \langle n_2 n_1 \mathbf{k}_{\mathrm{co}} | K | n_4 n_3 \mathbf{k}_{\mathrm{co}}' \rangle$$

BerkeleyGW Interpolation Scheme

In practice: <u>trading bands for k-points</u>

How to get a good interpolation?

Include a <u>large</u> number of bands from the coarse grid!

BerkeleyGW QP Interpolation

- BerkeleyGW also performs a <u>linear interpolation</u> for QP corrections.
- Linear interpolation + expansion over bands:
 - Captures (nk)-dependent QP correction and band crossing
 - Very smooth interpolation of band structure
 - Robust scheme, and very few parameters
- This is how inteqp.x works!

Typical BSE Workflow in BerkeleyGW

Goal

Goal: Diagonalize BSE Hamiltonian on a fine grid $[H]_{fi} = [E_c - E_v]_{fi} + [K]_{fi}$

BerkeleyGW Workflow

... and diagonalize BSE Hamiltonian

evals
$$[H]_{\mathrm{fi}} \Rightarrow \varepsilon_2$$

(Not shown: mean-field, epsilon, convergence)

sigma.x

Step I: Calculate QP–corrected band structure on a <u>coarse grid</u> $\{E_c\}_{co.}$ $\{E_v\}_{co.}$

• Same procedure done in previous sessions.

Recommended: eqp.dat

- Calculate QP energies on all k-points from WFN inner.
- Use the script eqp.py to generate <u>eqp.dat</u> file \rightarrow no human intervention!
- Also possible: scissors operators, less reliable (not covered here)

I. Sigma

Sample sigma.inp (assuming we are using eqp.dat)

```
screened_coulomb_cutoff <?>
bare_coulomb_cutoff <?>
number_bands <?>
band_occupation <?>
band_index_min <?>
band_index_max <?>
screening_semiconductor
number_kpoints <?>
begin kpoints
 <put <u>all k-points</u> from WFN_INNER here>
end
```

Note the two different # of bands: $E_{n\mathbf{k}}^{\mathrm{QP}} = \langle n\mathbf{k} | \Sigma | n\mathbf{k} \rangle$ \downarrow

Remember to calculate Sigma on more bands because of the interpolation!

Use same WFN co as in Sigma (WFN inner)

2. Kernel

Sample kernel.inp

number_val_bands <?>
number_cond_bands <?>

```
screened_coulomb_cutoff <?>
```

```
<?>_symmetries_coarse_grid
screening_<?> ___
```

Remember to calculate Kernel on more bands because of the interpolation!

Must be \leq than the # of bands used in Sigma.

You'll typically want to use symmetries here, so put: use_symmetries_coarse_grid

3. Absorption

absorption.x

Step 3: Interpolate to a <u>fine k-grid</u> and build BSE Hamiltonian...

 $[H]_{\rm co} \Rightarrow [H]_{\rm fi}$

... and diagonalize BSE Hamiltonian

evals $[H]_{fi} \Rightarrow \varepsilon_2$

- Absorption needs same coarse WFN_co from Kernel/Sigma
- Absorption also need two fine WFN files:
 - WFN_fi: for conduction states
 - WFNq_fi: for valence states
- Good practice: use randomly-shifted k-grids
 - > This maximizes the number of inequivalent transitions you capture.

3. Absorption – Workflow

Typical BSE Workflow in BerkeleyGW

Key Points

- BSE codes separated into two parts:
 - Kernel.x: calculates kernel on coarse grid
 - Absorption.x: interpolates and diagonalizes [H]
- number_*_bands_coarse, number_*_bands_fine.

Issues Unique to the BSE Code

- I. Velocity Operator
- 2. Finite Systems + Octopus
- 3. Estimating the Quality of the Interpolation
- 4. Analyzing Exciton Files
- 5. Convergence!

$$\varepsilon_{2}(-\mathbf{q},\omega) \propto \sum_{S} |\langle 0|\hat{\boldsymbol{v}}|S\rangle|^{2} \delta[\omega - \Omega_{S}] \qquad \langle 0|\hat{\boldsymbol{v}}|S\rangle = \sum_{vc\mathbf{k}} A_{vc\mathbf{k}}^{S} \langle v\mathbf{k} + \mathbf{q}|\hat{\boldsymbol{v}}|c\mathbf{k}\rangle$$

Because of non-local pseudopotential and QP corrections, the velocity operator is not the same as the momentum!

$$\hat{v} = i[H, \hat{r}] = \hat{p} + i[V, \hat{r}]$$

use_velocity

- Recommended option!
- Needs WFN_fi and WFNq_fi.
- Specify q-shift: $\mathbf{k}_{WFN_{fi}} + \mathbf{q}_{shift} = \mathbf{k}_{WFNq_{fi}}$

$$\langle 0|\hat{v}|S \rangle \approx \frac{\Omega_S}{q} \sum_{vc\mathbf{k}} A^S_{vc\mathbf{k}} \langle v\mathbf{k} + \mathbf{q} | e^{-i\mathbf{q}\cdot\mathbf{r}} | c\mathbf{k} \rangle$$

use_momentum

- Not recommended!
- Needs only WFN.
- Specify polarization \mathbf{e}_{λ} of \hat{v} .

 $\langle v\mathbf{k} + \mathbf{q} | \hat{v} | c\mathbf{k} \rangle \approx \langle v\mathbf{k} | \hat{p}_{\lambda} | c\mathbf{k} \rangle$

2. Finite Systems + Octopus

- For finite systems, Octopus can calculate the single-particle velocity matrix elements directly!
 - No need for two different WFN files and a q-shift in the absorption code.
 - BerkeleyGW can calculate $\varepsilon_2(\mathbf{q} = 0)$ "exactly".

In BerkeleyGW:

Read velocity matrix elm from file

Tell BerkleyGW that there's no q-shift. <u>Note</u>: this doesn't affect calculation of matrix elms because of the read_vmtxel flag.

There are no k-points, so there's no interpolation! Use directly the eqp.dat file (don't interpolate eqp_co.dat \rightarrow eqp.dat)

3. Quality of the Interpolation

- How to measure the quality of WFN expansion?
- If we include ∞ bands:

$$\sum_{n'} |C_{n,n'}^{\mathbf{k}_{co}}|^2 = 1$$

Finite basis set – normalization is reported in files d?mat_norm.dat:

		Norm of dvv matrices : Spins =							1
		k	-point		i	k_co	V	dist	dvv ^2
(0.059	ر	0.046 ,	0.039)	1	1	0.054	0.987006
(0.059	ر	0.046 ,	0.039)	1	2	0.054	0.953488
(0.059	ر	0.046,	0.039)	1	3	0.054	0.892665
(0.059	ر	0.046 ,	0.164)	2	1	0.139	0.923182

How to get a good interpolation?

- Include a large number of bands from the coarse grid!
- Start from a fine enough grid

Before renormalization of coefficients.

4. Analyzing Excitons

• Optical spectrum $\varepsilon_2(\omega), \varepsilon_1(\omega)$:

- <u>absorption noeh.dat</u>: GW-RPA without local fields
- <u>absorption eh.dat</u>: GW-BSE with local fields

• Eigenvalues of the BSE equation Ω_S :

eigenvalues.dat: useful to see if there are degeneracies, splitting, etc.

• Where the exciton is coming from:

- summarize_eigenvectors.x
- Need to set the flag write_eigenvalues in absorption.inp

5. Convergence!

- There are 4 convergence parameters in a typical BSE calculation:
 - # of <u>k-points</u> in the <u>fine</u> grid
 - # of <u>bands</u> in the <u>fine</u> grid
 - # of <u>k-points</u> in the <u>coarse</u> grid
 - # of <u>bands</u> in the <u>coarse</u> grid

D. Qiu, F. H. da Jornada, S. G. Louie, PRL 111, 216805 (2013).

Make sure you converge your calculations!

Issues Unique to the BSE Code

1. Velocity operator

Key Points

- Why we need 2 WFN files: velocity operator
- <u>Convergence!</u>

5. Convergence!

Let's Put the Donkey to Work!

Predicting quasiparticle band structures since 1985.