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Abstract. The generalized nonlinear Schr\"odinger equation with full dispersion (FDNLS) is con-
sidered in the semiclassical regime. The Whitham modulation equations are obtained for the FDNLS
equation with general linear dispersion and a generalized, local nonlinearity. Assuming the existence
of a four-parameter family of two-phase solutions, a multiple-scales approach yields a system of four
independent, first-order, quasi-linear conservation laws of hydrodynamic type that correspond to the
slow evolution of the two wavenumbers, mass, and momentum of modulated periodic traveling waves.
The modulation equations are further analyzed in the dispersionless and weakly nonlinear regimes.
The ill-posedness of the dispersionless equations corresponds to the classical criterion for modula-
tional instability (MI). For modulations of linear waves, ill-posedness coincides with the generalized
MI criterion, recently identified by Amiranashvili and Tobisch [New J. Phys., 21 (2019), 033029]. A
new instability index is identified by the transition from real to complex characteristics for the weakly
nonlinear modulation equations. This instability is associated with long wavelength modulations of
nonlinear two-phase wavetrains and can exist even when the corresponding one-phase wavetrain is
stable according to the generalized MI criterion. Another interpretation is that while infinitesimal
perturbations of a periodic wave may not grow, small but finite amplitude perturbations may grow,
hence this index identifies a nonlinear instability mechanism for one-phase waves. Classifications of
instability indices for multiple FDNLS equations with higher-order dispersion, including applications
to finite-depth water waves and the discrete NLS equation, are presented and compared with direct
numerical simulations.
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1. Introduction. We study the full-dispersion nonlinear Schr\"odinger (FDNLS)
equation

i\psi t = \widetilde \Omega ( - i\partial x)\psi + f \prime (| \psi | 2)\psi ,(1.1)

where the pseudodifferential operator \widetilde \Omega ( - i\partial x) captures full linear dispersion, whose
action is defined through the Fourier transform as

\widetilde \Omega ( - i\partial x)\psi (x, t)\equiv 
1

2\pi 

\int 
\BbbR 
\Omega (\xi )ei\xi x

\int 
\BbbR 
\psi (x\prime , t)e - i\xi x\prime 

dx\prime d\xi ,

where \Omega (\xi ) is a smooth, real-valued dispersion relation. The function f in (1.1) is a
smooth, generalized nonlinearity. The classical, cubic NLS equation with second-order
dispersion is the special case of (1.1) with \Omega (\xi ) = 1

2\xi 
2 and f(\rho ) = \sigma \rho 2/2, i.e.,
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1338 PATRICK SPRENGER, MARK A. HOEFER, AND BOAZ ILAN

i\psi t = - 1

2
\psi xx + \sigma | \psi | 2\psi , \sigma =\pm 1 .(1.2)

The NLS equation (1.2) is a universal model of the slowly varying (weakly dispersive)
and weakly nonlinear envelope of a monochromatic wavetrain [1, 67].

The impetus for the FDNLS equation is the modeling approach that was pioneered
by Whitham in the context of shallow water waves [81]. The Whitham equation

ut + uux + i\widetilde \Omega ( - i\partial x)u= 0(1.3)

incorporates weak nonlinearity and the full linear dispersion of unidirectional water
waves with frequency \Omega (k) =

\surd 
k tanhk and corresponding pseudodifferential operator

defined by the symbol \widetilde \Omega ( - i\partial x) =\sqrt{}  - i\partial x tanh( - i\partial x). Equation (1.3) has been shown
to be a superior model when approximating the Euler equations [65] and experiments
[76, 24] when compared to the Korteweg--de Vries (KdV) equation in the shallow water
regime where i\widetilde \Omega ( - i\partial x)u= ux + uxxx/6. Whitham's idea is natural from a modeling
standpoint and has since been generalized to other physical scenarios and model equa-
tions, primarily in the context of single- or multilayer fluids [56, 61, 3, 58, 33, 50, 17].
In the same spirit, we view the FDNLS equation (1.1) as a generic weakly nonlinear,
strongly dispersive modulation equation for one-phase wavetrains, which has been
used in various applications such as water waves [78] and optics [5].

The NLS equation (1.2) is the canonical model for weakly dispersive deep water
waves [87, 1]. However, higher-order dispersive effects can be significant in this context
[10, 11, 79, 78, 71, 72, 61], such as for oceanic rogue waves (also known as freak waves or
peaking waves) that exhibit steep, cusp-like profiles [36, 6]. Higher-order generalized
NLS models are also significant in other applications. In particular, higher-order
dispersive effects are important for ultrashort optical pulses [4] where the propagation
of intense laser pulses in optical fibers have been studied for more than 30 years (cf.
[70, 4]). In that context, the measured spectrum of optical fibers corresponds to
\Omega (\xi ).1 Example experimental and theoretical studies on short-wave effects that are
not captured by the NLS equation (1.2) include radiative effects in optical fibers
[27, 28, 63], longitudinal soliton tunneling in dispersion-shifted fibers [64], and four-
wave mixing resulting from a dual-frequency pump in a single-mode fiber [7, 44].
Stronger dispersion has been used to predict the appearance of new types of optical
instabilities [88, 5, 46].

A powerful mathematical tool for analyzing modulations of nonlinear waves is
Whitham modulation theory [82]. Whitham modulation theory describes the slow
evolution of nonlinear wavetrains by a system of quasi-linear, first-order partial differ-
ential equations for the wave parameters known as the Whitham modulation
equations---plural so as not to be confused with the singular Whitham equation (1.3).
The Whitham equations are used to describe long wavelength modulations of strongly
nonlinear wavetrains and hence can be viewed as a large amplitude generalization of
the classical NLS equation (1.2), albeit without dispersive corrections [67]. One of
the earliest applications of modulation theory was to the study of modulational in-
stability (MI) of nonlinear periodic traveling waves in optics [75, 16, 68] and water
waves [13, 12]. Around the same time, it was recognized that the ellipticity, hence ill-
posedness of the initial value problem, of the Whitham modulation equations implies
MI [82]. See [86] for a more detailed history.

1For optical pulses, t is propagation distance, x is time in the frame moving with the pulse's
center, \xi is temporal frequency, and \Omega (\xi ) is the carrier wavenumber.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

1/
24

 to
 1

04
.6

0.
23

7.
45

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



WHITHAM THEORY FOR GENERALIZED NLS EQUATIONS 1339

In this work, we consider long wavelength modulations of both one- and two-
phase solutions of the FDNLS equation (1.1). Assuming the existence of two-phase
solutions, we obtain the Whitham modulation equations in a general form for slow
spatio-temporal variation of the solution's parameters. We then obtain approximate
two-phase solutions and analyze the corresponding modulation equations in more de-
tail. We determine their hyperbolicity and a new two-phase modulational instability
index that determines whether small amplitude, long wavelength perturbations of the
two-phase solution grow. When the dispersion \Omega (\xi ) is cubic, quartic, from finite-
depth water waves, or from the discrete NLS equation, we identify regimes where the
periodic, one-phase solution is modulationally stable but the two-phase solution is
modulationally unstable. This result implies nonlinear instability, i.e., that appropri-
ately selected small but finite amplitude perturbations of the one-phase solution grow
even though infinitesimal, linear perturbations do not.

In order to set the stage for the modulation and stability analysis of FDNLS
solutions, we now briefly review modulation theory and MI for the cubic NLS equation
(1.2).

1.1. Modulation theory. The simplest one-phase solution of (1.2) is

\psi (x, t) =
\surd 
\=\rho ei\theta , \theta = ux - \gamma t, \gamma =

1

2
u2 + \sigma \=\rho , \=\rho > 0, u\in \BbbR ,(1.4)

where \=\rho = | \psi | 2 is the square modulus, u = i(\psi \ast 
x\psi  - \psi x\psi 

\ast )/\=\rho is the wavenumber (\psi \ast 

is the complex conjugate of \psi ), and \gamma is the frequency. These quantities admit a
hydrodynamic interpretation in which \=\rho and u are analogous to the fluid density and
velocity, respectively [52]. The solution (1.4) is often referred to as the Stokes wave,
owing to its derivation by Stokes in the context of weakly nonlinear water waves [74].

Modulation equations for the Stokes solution's parameters (\=\rho ,u) can be obtained
with the WKB-like, multiscale ansatz [82]

\psi (x, t) =
\sqrt{} 

\=\rho (X,T )ei\theta + \epsilon \psi 1(\theta ,X,T ) + \cdot \cdot \cdot ,(1.5)

where X = \epsilon x, T = \epsilon t, and

\theta = S/\epsilon , \theta x = SX = u(X,T ), \theta t = ST = - \gamma (X,T ), 0< \epsilon \ll 1.(1.6)

This ansatz is then inserted into (1.2) and like powers of \epsilon are equated. At leading
order, we obtain the same frequency relation as in (1.4) that is now applicable locally
\gamma (X,T ) = 1

2u(X,T )
2 + \sigma \=\rho (X,T ). Combining solvability at \scrO (\epsilon ) over the space of

2\pi -periodic functions in \theta for \psi 1(\theta ,X,T ) and the compatibility condition SXT = STX

yields the modulation equations, also known as the shallow water equations,

\=\rho T + (\=\rho u)X = 0,(1.7a)

uT +
\bigl( 
1
2u

2 + \sigma \=\rho 
\bigr) 
X
= 0 .(1.7b)

The characteristic velocities of the shallow water equations (1.7) are

\lambda 1,2 = u\pm 
\surd 
\sigma \=\rho .(1.8)

Equations (1.7) describe large amplitude, nonlinear modulations. When \sigma = 1, the
modulation equations are hyperbolic. As such, smooth initial data can develop a
gradient catastrophe in finite time, which is regularized by higher-order dispersive
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1340 PATRICK SPRENGER, MARK A. HOEFER, AND BOAZ ILAN

effects not included in (1.7). This regularization can be achieved by incorporating an
additional phase into modulation theory that results in the formation of a dispersive
shock wave (DSW) [38, 43]. When \sigma =  - 1, the characteristic velocities (1.8) are
complex and the initial value problem is ill-posed. Nevertheless, the evolution of
certain initial data that leads to singularity formation can also be regularized by
appealing to additional modulation phases [40, 42, 18].

The NLS equation (1.2) admits exact solutions in terms of Jacobi elliptic func-
tions. The solutions take the form

\psi (x, t) =
\sqrt{} 
\rho (\theta 2) exp

\Biggl( 
i\theta 1 + i

\int \theta 2

0

u(s)ds

\Biggr) 
,(1.9)

where \theta 1 = ux - \gamma t, \theta 2 = kx - \omega t, \rho (\theta ) is a 2\pi -periodic function, and u(\theta ) is a mean-
zero, 2\pi -periodic function. The form of the solutions for \sigma =\pm 1 is well documented;
see, e.g., [57]. Since (1.9) is periodic in two independent phases \theta 1 and \theta 2, it is called
a two-phase solution. The phase \theta 1 is sometimes referred to as trivial because it
corresponds to the Stokes wave background (1.4) when \rho (\theta ) = \=\rho and u(\theta ) = 0 are
constant.

The modulation equations for the parameters of the two-phase solution family
(1.9) have been derived in both cases \sigma = \pm 1 [45, 69]. They can be cast in the
diagonalized form

\partial rj
\partial T

+ \lambda j(r)
\partial rj
\partial X

= 0, j = 1,2,3,4,(1.10)

where r = (r1, r2, r3, r4) is the vector of parameters for the two-phase solution (1.9).
When \sigma =  - 1, the characteristic velocities \lambda j are generically complex, hence (1.10)
is elliptic. When \sigma = 1, the equations in (1.10) are strictly hyperbolic and genuinely
nonlinear [60].

Modulation theory is a powerful tool for the analysis of multiscale nonlinear waves
in dispersive hydrodynamics [19]. A prominent example is the regularization of dis-
persive hydrodynamic singularities resulting in DSWs that are expanding, modulated
wavetrains [41]. Utilizing the approach from [17] for the Whitham equation (1.3), we
obtain the Whitham modulation equations for the FDNLS equation (1.1) and then
apply them to the problem of MI. But first, we review MI for the NLS equation (1.2).

1.2. Classical MI of one- and two-phase solutions. The sign \sigma in the
NLS equation (1.2) determines the nature of the modulations as repulsive/defocusing
(\sigma = 1) or attractive/focusing (\sigma =  - 1). It will be helpful to review the stability of
one- and two-phase solutions of the defocusing and focusing NLS equation (1.2). Lin-
earizing (1.2) about the Stokes solution (1.4) and seeking perturbations proportional
to ei((u\pm k)x - (\gamma +\omega )t) yields the linear dispersion relation

(\omega  - uk)2 =
1

4
k2(k2 + 4\sigma \=\rho ) .(1.11)

For k \rightarrow 0, the phase speed \omega /k \rightarrow u\pm 
\surd 
\sigma \=\rho limits to the characteristic velocities of

the modulation equations (1.7). The two branches of the frequency \omega satisfying (1.11)
are real-valued for all values of k \in \BbbR when \sigma = 1. When \sigma = - 1, the growth rate of
the positive branch Im\omega = 1

2 | k| 
\sqrt{} 
4\=\rho  - k2 is nonzero for real k satisfying 0<k2 < 4\=\rho .

To illustrate the instabilities of Stokes waves, we perform direct numerical simu-
lations of the NLS equation (1.2). The initial condition is the perturbed Stokes wave
\psi (x,0) = eiux + \epsilon p(x), with 0< \epsilon \ll 1 and p(x) smooth, band-limited noise,
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WHITHAM THEORY FOR GENERALIZED NLS EQUATIONS 1341

Fig. 1. Spectral amplitude of the plane wave (1.4) with \=\rho = 1, u= 1 subject to the perturbation
(1.12) with \epsilon = 10 - 11 after numerical evolution. (a) The defocusing case \sigma = 1 at t = 20, and (b)
the focusing case \sigma =  - 1 at t = 10 with the predicted amplitude from linear theory in red. (Color
online.)

p(x) = eiux
\sum 

| n| <M

\scrE (n)ei2n\pi x/L ,(1.12)

where L is the computational domain size,M = \lfloor kL
2\pi \rfloor is the number of discrete Fourier

modes, and \scrE (n) is a length 2M + 1 vector with uniformly sampled, random values
in the interval [ - 1,1] generated using the MATLAB rand function.

In Figure 1, we plot the amplitude of the Fourier spectrum of the solution,
| \widehat \psi (\xi ,\Delta t)| with spectral parameter \xi , after the evolution time \Delta t > 0. In the case
\sigma = 1 of Figure 1(a), the spectrum consists of a single peak at \xi = u with negligible
change to the spectrum of the initial perturbation of \scrO (\epsilon ). For \sigma = - 1 in Figure 1(b),
the spectrum for 0 < | \xi  - u| < 2 is amplified. The amplitude is predicted to grow
according to (1.11) (in which \xi = u + k) as | \widehat \psi (\xi ,\Delta t)| \approx | \widehat \psi (\xi ,0)| exp (Im\omega (\xi )\Delta t) \approx 
\epsilon exp( 12 | \xi  - u| 

\sqrt{} 
4 - (\xi  - u)2\Delta t), provided \Delta t is small enough for the evolution of the

perturbation (1.12) to remain in the linear regime. The predicted growth in the
spectrum is overlaid on the simulation in Figure 1(b).

Since the modulation equations (1.7) are elliptic when \sigma =  - 1, ill-posedness
of the initial value problem for the modulation equations corresponds to MI of the
Stokes wave [82]. Linearizing equations (1.7) about constant \=\rho and u, we observe
that the growth rate of perturbations \propto eiK(X - \lambda 1,2T ) with wavenumber K > 0 is
Im\lambda 2K =

\surd 
\=\rho K when \sigma =  - 1. This coincides with the small k expansion of the

growth rate from the dispersion relation (1.11), Im\omega \sim 
\surd 
\=\rho k, k \rightarrow 0. Note that

modulation theory does not predict a saturation of the growth rate, which, according
to (1.11), occurs at the order one perturbation wavenumber k=

\surd 
2\=\rho .

The MI of the two-phase solution (1.9) can be determined by the hyperbolicity
of the two-phase modulation equations (1.10). Since the modulation equations are
hyperbolic (elliptic) when \sigma = 1 (\sigma =  - 1), the two-phase solution is modulationally
stable (unstable) and has been proven to be so by spectral analysis of the linearized
operator when \sigma = 1 [22] and \sigma =  - 1 [48, 32]. Furthermore, it has been shown
that weak hyperbolicity of the modulation equations (all characteristic speeds are
real) is a necessary condition for the modulational stability of nonlinear periodic
wavetrains [23, 54, 15]. Sufficiency is obtained when the modulation equations are
strictly hyperbolic and the original PDE is Hamiltonian [55].

In Figure 2, we plot two numerical simulations of the perturbed two-phase solu-
tions in the \sigma = 1 case (Figures 2(a), (b)) at t= 150 and the \sigma = - 1 case (Figures 2(c),
(d)) at t= 10, respectively. Figures 2(a), (c) depict the square modulus | \psi | 2 whereas
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1342 PATRICK SPRENGER, MARK A. HOEFER, AND BOAZ ILAN

Fig. 2. Initially perturbed two-phase solutions of the NLS equation with \sigma = 1 at t = 150 (a),
(b) and \sigma = - 1 at t= 10 (c), (d). (a), (c) depict the solution's square modulus and (b), (d) show the
Fourier amplitude spectrum at the initial (gray) and final (black) times.

Figures 2(b), (d) show the amplitude spectrum | \widehat \psi | . For these simulations, the car-
rier wavenumber is u =  - 0.5 and the second-phase wavenumber is k = 2, and the
amplitude parameter is \=\rho = 1. In both cases, there is a prominent peak at \xi = u in
the amplitude spectrum with distinct harmonics at \xi = u+ nk for integers n. In the
stable case, \sigma = 1, the spectrum is unchanged even for long time evolution.

The spectral features in Figure 2(d) represent the early stage of MI, where the
growth of the perturbation has not exceeded the largest spectral harmonics. The
nonlinear stage of instability occurs for longer evolution times where the dynamics
can be quite complicated, though the integrability of the NLS equation allows for the
development of theory for both localized [20, 21] and random [47] perturbations.

In the simplest cases presented here, (1.2) possesses both stable one-phase and
two-phase solutions when \sigma = 1 and both unstable one-phase and two-phase solu-
tions when \sigma =  - 1. This motivates the following question: Does the addition of full
dispersion into the NLS model (1.1) allow for situations in which one-phase, plane
wave solutions are stable, but two-phase solutions with the same \=\rho , u are unstable?
After developing the modulation analysis, we will provide several physically inspired
examples where the answer is yes.

1.3. Outline of this manuscript. This manuscript is organized as follows. In
section 2, we derive the Whitham modulation equations for two-phase wavetrains
in the FDNLS equation (1.1). In section 3, we utilize the Whitham modulation
equations to identify criteria for when both one-phase and two-phase wavetrains are
stable with respect to long wave perturbations. We also obtain approximate two-
phase solutions of the FDNLS equation with general \Omega (k) for a plane wave subject
to weakly nonlinear modulations in the second phase. Then, the corresponding two-
phase Whitham modulation equations and their characteristic velocities are obtained
in this regime. We identify an index that determines the modulation equation type
and the different mechanisms that drive the instability of the underlying two-phase

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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WHITHAM THEORY FOR GENERALIZED NLS EQUATIONS 1343

solution. In section 4, we present phase diagrams predicting the stable/unstable
two-phase solutions and the type of instability for several choices of dispersion \Omega (k).
These predictions are then compared with numerical simulations of perturbed two-
phase solutions. Finally, in section 5, we conclude with a discussion of the implications
and extensions of the present theory.

2. Modulation theory for two-phase waves. The FDNLS equation (1.1)
admits the one-phase, Stokes wave solutions

\psi (x, t) =
\surd 
\=\rho ei\theta 1 , \theta 1 = ux - \gamma t, \gamma =\Omega (u) + f \prime (\=\rho ),(2.1)

for any \=\rho > 0 and u \in \BbbR . Here, u and \gamma are the wavenumber and frequency pair,
respectively. The solution (2.1) is referred to as the carrier wave. We assume the
existence of a four-parameter family of two-phase solutions to (1.1) in the form

\psi (x, t) = \scrU (\theta 2)ei\theta 1 , \theta 1 = ux - \gamma t, \theta 2 = kx - \omega t,(2.2)

where (u,\gamma ) and (k,\omega ) are the first and second phases' wavenumber and frequency,
respectively. The oscillation periods for each phase are normalized to 2\pi : \psi (\theta 1 +
2\pi n, \theta 2 + 2\pi m) = \psi (\theta 1, \theta 2) for integers n, m. For incommensurate wavenumbers and
frequencies, the solution (2.2) is quasi-periodic. Each of the frequencies \gamma and \omega 
generally depend on both wavenumbers u and k. The two-phase solution (2.2) can be
parameterized, for example, in terms of the mean parameters

\=\rho \equiv 1

4\pi 2

\int 2\pi 

0

\int 2\pi 

0

| \psi (\theta 1, \theta 2)| 2 d\theta 1d\theta 2, u\equiv i

4\pi 2

\int 2\pi 

0

\int 2\pi 

0

(\psi \ast 
x\psi  - \psi x\psi 

\ast )/| \psi | 2 d\theta 1d\theta 2,

(2.3)

the wavenumber k, and amplitude a, which is the magnitude of the Fourier mode
with wavenumber u + k. The two-phase solution (2.2) is an amplitude and phase
modulated Stokes waves (2.1). We demonstrate existence by obtaining approximate
and numerical solutions in the weakly nonlinear regime.

Whitham modulation theory is a formal asymptotic procedure to derive a system
of conservation laws that describe the slow evolution of a periodic or quasi-periodic
solution [82, 41]. We now carry out the derivation of the modulation equations using
Whitham's original method of averaged conservation laws [80]. A modulated two-
phase solution is sought in the form

\psi (x, t) = \scrU (\theta 2,X,T )ei\theta 1 + \epsilon \psi 1(\theta 1, \theta 2,X,T ) + \cdot \cdot \cdot , \epsilon \rightarrow 0,(2.4)

where \theta 1 is the carrier phase, \theta 2 is the second, envelope phase, and \scrU is a complex
modulation, which depends on \theta 2 and the slow scales X = \epsilon x, T = \epsilon t. The phase
functions \theta 1, \theta 2 are rapidly varying

\theta j = Sj(X,T )/\epsilon , j = 1,2,

for smooth functions S1, S2. It is expedient to define the generalized wavenumbers
and frequencies as

\theta 1,x = S1,X = u, \theta 2,x = S2,X = k,

\theta 1,t = S1,T = - \gamma , \theta 2,t = S2,T = - \omega .
(2.5)
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1344 PATRICK SPRENGER, MARK A. HOEFER, AND BOAZ ILAN

The periods of S1 and S2 are fixed in order to ensure a well-ordered asymptotic
expansion. Without loss of generality, we take these to be 2\pi , so that \scrU is also
2\pi -periodic in \theta 2. Hence, \scrU is represented by its Fourier series

\scrU (\theta 2,X,T ) =
\infty \sum 

n= - \infty 
\widehat qn(X,T )ein\theta 2 .(2.6)

It is a straightforward calculation to prove that (1.1) possesses the conserved
quantities (2.2)

M [\psi ] =

\int 
| \psi | 2 dx,(2.7a)

P [\psi ] =

\int 
(\psi \ast \psi x  - \psi \psi \ast 

x) dx,(2.7b)

E[\psi ] =

\int \bigl( 
\psi \ast \Omega ( - i\partial x)\psi + f(| \psi | 2)

\bigr) 
dx,(2.7c)

corresponding respectively to mass, momentum, and energy.
Two modulation equations are found by inserting the multiple scales expansion

(2.4) into the first two conservation laws corresponding to M and P integrated over
the two-phase solution family. Replacing partial derivatives in x, t with appropriate
partial derivatives in \theta 1, \theta 2,X, and T , the linear dispersion operator \Omega is expanded
in a similar way to the expansions of the dispersion operators in the scalar Whitham
equation [17]. We extend those results to the case where the operator is acting on a
function of two independent phase variables and obtain, to \scrO (\epsilon ), that\widetilde \Omega ( - i\partial x)\psi (x, t) = \widetilde \Omega (D - i\epsilon \partial X)\psi (\theta 1, \theta 2,X,T )

= \widetilde \Omega (D)\psi + i
\epsilon 

2

\Bigl[ \widetilde \Omega \prime (D)\psi X +
\Bigl( \widetilde \Omega \prime (D)\psi 

\Bigr) 
X

\Bigr] 
+\scrO (\epsilon 2) ,

(2.8)

where D= - i\=u\partial \theta 1  - ik\partial \theta 2 , and
\widetilde \Omega \prime (\cdot ) is the pseudodifferential operator corresponding

to the symbol \Omega \prime (\xi ). The proof for single-phase functions can be found in the appendix
of [17], where \Omega (\xi ) is assumed to be analytic. However, this requirement can be
relaxed to three weak derivatives of \Omega (k) in an appropriate function space [25].

We now outline the derivation of the modulation equation that is a consequence
of mass conservation (2.7a). First, one expands the conserved quantity (2.7a)

d

dt

\int 2\pi 

0

\int 2\pi 

0

| \psi | 2 d\theta 1d\theta 2 =
\int 2\pi 

0

\int 2\pi 

0

( - \gamma \partial \theta 1  - \omega \partial \theta 2 + \epsilon \partial T )| \psi | 2 d\theta 1d\theta 2 = \epsilon 
\Bigl( 
| \scrU | 2

\Bigr) 
T
+\scrO (\epsilon 2),

(2.9)

where the averaging operator is denoted

F [\psi ](X,T ) =

\int 2\pi 

0

\int 2\pi 

0

F [\psi (\theta 1, \theta 2,X,T )]d\theta 1d\theta 2.

We now determine the representation of the averaged mass flux. This can be achieved
by alternatively replacing t-derivatives of \psi with the right-hand side of (1.1) and uses
(2.6) to find that

d

dt

\int 2\pi 

0

\int 2\pi 

0

| \psi | 2 d\theta 1d\theta 2 = - \epsilon 

\Biggl( \sum 
n

\Omega \prime (u+ nk)| qn| 2
\Biggr) 

X

+\scrO (\epsilon 2).(2.10)
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WHITHAM THEORY FOR GENERALIZED NLS EQUATIONS 1345

Equating terms at \scrO (\epsilon ) from (2.9) and (2.10) results in averaged mass conservation

\Bigl( 
| \scrU | 2

\Bigr) 
T
+

\Biggl( \sum 
n

\Omega \prime (u+ nk)| qn| 2
\Biggr) 

X

= 0.(2.11)

Similar calculations with (2.7b) and (2.7c) yield averaged momentum conservation\Biggl( \sum 
n

(u+ nk)| qn| 2
\Biggr) 

T

+
\Bigl( 
f \prime (| \scrU | 2)| \scrU | 2  - f(| \scrU | 2)

\Bigr) 
X

+

\Biggl( \sum 
n

(u+ nk)\Omega \prime (u+ nk)| qn| 2
\Biggr) 

X

= 0,

(2.12)

and averaged energy conservation

\Bigl( 
\scrU \ast \widetilde \Omega (D)\scrU + f(| \scrU | 2)

\Bigr) 
T
+

\Biggl( \sum 
n

\Omega (u+ nk)\Omega \prime (u+ nk)| qn| 2
\Biggr) 

X

+
1

2

\biggl( 
\scrU \ast 
\Bigl( \widetilde \Omega \prime (D)f \prime (| \scrU | 2)\scrU 

\Bigr) 
+ f \prime (| \scrU | 2)\scrU 

\Bigl( \widetilde \Omega \prime (D)\scrU \ast 
\Bigr) \biggr) 

X

= 0.

(2.13)

Two additional modulation equations are obtained by requiring that the phase
variables are twice continuously differentiable, i.e., Sj,XT = Sj,TX for j = 1,2. These
constraints result in the two conservation of waves equations

uT + \gamma X = 0,(2.14a)

kT + \omega X = 0.(2.14b)

Equations (2.11), (2.12), (2.13), (2.14a), and (2.14b) are five conservation laws
for the four dependent variables (\=\rho ,u, k, a). The averaged energy equation is, generi-
cally, redundant with the remaining four modulation equations [82, 14]. We will focus
on the averaged mass (2.11), averaged momentum (2.12), and conservation of waves
equations (2.14a), (2.14b) as a closed set of modulation equations for the four modu-
lation parameters (\=\rho ,u, k, a). In what follows, we study properties of these equations
with increasing levels of complexity.

3. Modulations of one- and two-phase wavetrains.

3.1. One-phase modulations. The modulation equations for the one-phase
Stokes wave \psi =

\surd 
\=\rho ei\theta 1 can be obtained from the two-phase modulation equations

by taking qn = 0 for n \not = 0 and q0 =
\surd 
\=\rho . Then, (2.11) and (2.14a) become

(\=\rho )T + (\=\rho \Omega \prime (u))X = 0,(3.1a)

uT + (f \prime (\=\rho ) +\Omega (u))X = 0.(3.1b)

When qn = 0, n \not = 0, the momentum and energy conservation laws (2.12), (2.13) are an
immediate consequence of (3.1). The remaining modulation equation (2.14b) limits
to
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1346 PATRICK SPRENGER, MARK A. HOEFER, AND BOAZ ILAN

kT +
\Bigl( 
\omega 
(\pm )
0

\Bigr) 
X
= 0,(3.2)

where \omega 
(\pm )
0 is the dispersion relation of the FDNLS equation (1.1) for linear waves

propagating on the Stokes wave

\omega 
(\pm )
0 =\scrN 1 \pm 

\sqrt{} 
\scrM 1(\scrM 1 + 2\=\rho f \prime \prime (\=\rho )),

\scrN 1 =
1

2
(\Omega (u+ k) - \Omega (u - k)), \scrM 1 =

1

2
(\Omega (u+ k) - 2\Omega (u) +\Omega (u - k)) .

(3.3)

The dispersionless modulation equations (3.1) are a 2\times 2 system of conservation laws
for the variables (\=\rho ,u) that are independent of k. We therefore first consider the
evolution of (\=\rho ,u) according to (3.1) and then discuss the evolution of k in (3.2).

Equations (3.1) exhibit the characteristic velocities

\lambda 1,2 =\Omega \prime (u)\pm 
\sqrt{} 

\=\rho f \prime \prime (\=\rho )\Omega \prime \prime (u) ,(3.4)

which are real and strictly ordered \lambda 1 <\lambda 2 if and only if

\=\rho f \prime \prime (\=\rho )\Omega \prime \prime (u)> 0 .

In this case, the modulation equations (3.1) are strictly hyperbolic. Equations (3.1)
are diagonalized in terms of the Riemann invariants

r1,2 =

\int u\sqrt{} 
\Omega \prime \prime (\tau )d\tau \pm 

\int \=\rho 
\sqrt{} 
f \prime \prime (s)

s
ds,

so that (3.1) are equivalent to rj,T + \lambda jrj,X = 0, j = 1,2. The system (3.1) is
genuinely nonlinear so long as \nabla \lambda \cdot r \not = 0 for each eigenvalue-eigenvector pair (\lambda ,r)
[62]. For cubic nonlinearity, f \prime (\=\rho ) = \=\rho , the loss of genuine nonlinearity occurs when
3\Omega \prime \prime (u)3/2 =\pm 

\surd 
\=\rho \Omega \prime \prime \prime (u).

The classical MI criterion

\=\rho f \prime \prime (\=\rho )\Omega \prime \prime (u)< 0(3.5)

is obtained when the velocities (3.4) are complex. We define the carrier-phase MI
index

\Delta CPMI = sgn [\=\rho f \prime \prime (\=\rho )\Omega \prime \prime (u)] ,(3.6)

so that the condition for classical MI is \Delta CPMI = - 1 [82]. This criterion is equivalent
to \sigma = - 1 in the NLS equation (1.2) for modulations of a Stokes wave in dispersive,
nonlinear media [17].

The conservation of waves (3.2) describes the evolution of infinitesimal (linear)
waves propagating on a modulated Stokes wave. Its characteristic velocity is the group
velocity \omega 

(\pm )
0,k (k, \=\rho ,u) whose long wavelength limit limk\rightarrow 0 \omega 

(\pm )
0,k = \lambda 1,2 coincides with

one of (3.4). When \Delta CPMI =  - 1, the instability's growth rate in the linear regime

is Im\omega 
(\pm )
0 . This linearization of the FDNLS equation about the Stokes wave (2.1)

and subsequent analysis was previously identified as the extended criterion for MI [5].
In what follows, we investigate the scenario when the Stokes wave is modulationally
stable according to the extended MI criterion \Delta CPMI = 1 but exhibits an instability
due to finite amplitude modulations involving a second phase.
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WHITHAM THEORY FOR GENERALIZED NLS EQUATIONS 1347

3.2. Weakly nonlinear, two-phase wavetrains. To approximate the two-
phase solution, we insert (2.2) into (1.1) and obtain

( - \gamma + i\omega \partial \theta 2)\scrU = \widetilde \Omega (u - ik\partial \theta 2)\scrU + f \prime (| \scrU | 2)\scrU .(3.7)

Introducing the small amplitude parameter 0<a\ll 1, expanding the solution as

\scrU =
\surd 
\rho 0 + aei\theta 2 + aB1e

 - i\theta 2 + a2A2e
2i\theta 2 + a2B2e

 - 2i\theta 2 + . . . ,

\gamma = \gamma 0 + a2\gamma 2 + . . . , \omega = \omega 0 + a2\omega 2 + . . . ,
(3.8)

inserting the expansions into (3.7), and gathering terms in powers of a, we solve the
resulting linear problems for A2, Bj , \gamma j , \omega j for j = 1,2. The results of the perturbation
analysis up to \scrO (a2) are

\gamma 0 = f \prime (\rho 0) +\Omega (u), \omega 
(\pm )
0 =\scrN 1 \pm 

\surd 
\scrP , B

(\pm )
1 = - 1 +

\scrM 1 \pm 
\surd 
\scrP 

\rho 0f \prime \prime (\rho 0)
,

A
(\pm )
2 =

\surd 
\rho 0

\scrD 

\Bigl[ 
(\scrM 2  - \scrN 2 + 2\gamma 0)

\Bigl( 
\scrG (\pm )
3 + 2(2B

(\pm )
1 + 1)f \prime \prime (\rho 0)

\Bigr) 
 - \scrG (\pm )

2

\Bigr] 
,

B
(\pm )
2 = - 

\surd 
\rho 0

\scrD 

\Bigl[ 
(\scrM 2 +\scrN 2  - 2\gamma 0)

\Bigl( 
\scrG (\pm )
3 + 2B

(\pm )
1 (B

(\pm )
1 + 2)f \prime \prime (\rho 0)

\Bigr) 
 - \scrG (\pm )

2

\Bigr] 
,

\gamma 
(\pm )
2 = 2

\biggl( \Bigl( 
B

(\pm )
1

\Bigr) 2
+B

(\pm )
1 + 1

\biggr) 
f \prime \prime (\rho 0) + \scrG (\pm )

3 ,

(3.9a)

and

\omega 
(\pm )
2 =

1

2((B
(\pm )
1 )2  - 1)

\biggl[ 
2
\Bigl( 
(1 + 2B

(\pm )
1 )A

(\pm )
2 +B

(\pm )
1 (2 +B

(\pm )
1 )B

(\pm )
2

\Bigr) 
\times 
\Bigl( 
(B

(\pm )
1 )4 + 2(B

(\pm )
1 )3 + 2B

(\pm )
1 + 1 - 2

\surd 
\rho 0f

\prime \prime (\rho 0)
\Bigr) 

 - 
\Bigl( \surd 

\rho 0(A
(\pm )
2 +B

(\pm )
2 ) + (1 + (B

(\pm )
1 )2)

\Bigr) 
\scrG (\pm )
3 + \rho 0f

(4)(\rho 0)(1 +B
(\pm )
1 )4

\biggr] 
,

(3.9b)

where we introduce

\scrM j =
1
2 (\Omega (u+ jk) - 2\Omega (u) +\Omega (u - jk)) , \scrN j =

1
2 (\Omega (u+ jk) - \Omega (u - jk)) ,(3.9c)

\scrP =\scrM 1 (\scrM 1 + 2\rho 0f
\prime \prime (\rho 0)) , \scrG (\pm )

2 = 2
\Bigl( 
(B

(\pm )
1 )2  - 1

\Bigr) 
\rho 0[f

\prime \prime (\rho 0)]
2,

\scrG (\pm )
3 = (B

(\pm )
1 + 1)2\rho 0f

(3)(\rho 0), \scrD = 2(2\gamma 0  - \scrN 2)
2  - \scrM 2 (\scrM 2 + 2\rho 0f

\prime \prime (\rho 0)) .

The approximate two-phase solution is given by (3.8) and (3.9). A few remarks

are in order. There are two solutions, one for each sign in \omega 
(\pm )
0 as in (3.3). Hence,

there are two distinct branches of two-phase solutions bifurcating from the one-phase
solution. The denominator of \omega 

(\pm )
2 in (3.9b) is zero when | B(\pm )

1 | = 1. This occurs only
when \scrM 1 = 0 or \rho 0 = 0, which we exclude from further consideration. In general, \scrM j

and \scrN j depend on both u and k, and hence so do \omega 
(\pm )
0 , \gamma 2, and \omega 

(\pm )
2 . The terms \scrM j

and \scrN j are the discrete Laplacian and centered difference, respectively, that capture
the dispersion's nonlocality with the long wavelength limits \scrM j \sim 1

2 (jk)
2\Omega \prime \prime (u), \scrN j \sim 

1
2jk\Omega 

\prime (u) as k\rightarrow 0.

3.3. Modulation system for weakly nonlinear two-phase solutions. In-
serting the two-phase solution (3.8)--(3.9) into the modulation system for mass (2.11),
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1348 PATRICK SPRENGER, MARK A. HOEFER, AND BOAZ ILAN

momentum (2.12), and conservation of waves (2.14a), (2.14b) while retaining terms
up to \scrO (a2), we arrive at \bigl( 

\rho 0 + a2(B2
1 + 1)

\bigr) 
T
+
\bigl( 
\rho 0\Omega 

\prime (u) + a2\scrQ +

\bigr) 
X
= 0 ,(3.10a)

\bigl( 
\rho 0u+ a2(u+ k+B2

1(u - k))
\bigr) 
T

+
\bigl[ 
 - f(\rho 0) + \rho 0 (f

\prime (\rho 0) + u\Omega \prime (u)) + a2 (\rho 0\gamma 2 + u\scrQ + + k\scrQ  - )
\bigr] 
X
= 0 ,

(3.10b)

uT + (\gamma 0 + a2\gamma 2)X = 0 ,(3.10c)

kT + (\omega 0 + a2\omega 2)X = 0 ,(3.10d)

where we introduce

\scrQ \pm =\Omega \prime (u+ k)\pm B2
1\Omega 

\prime (u - k),(3.11)

and we have suppressed the superscript (\pm ) denoting the fast (+)/slow ( - ) branch of
two-phase solutions---which differs from the subscript in \scrQ \pm ---for ease of presentation.
Note that \scrQ \pm depend also on \rho 0 via B1 (3.9a).

3.4. Characteristic velocities of the weakly nonlinear modulation sys-
tem. To compute the characteristic velocities \{ \lambda j\} 4j=1 of the Whitham modulation
equations (3.10), we can cast them in the quasi-linear form

\scrA qT +\scrB qX = 0, q=
\bigl[ 
\rho 0, u, a

2, k
\bigr] T

(3.12)

and solve the generalized eigenvalue problem \scrB v= \lambda \scrA v. We compute the eigenvalues
perturbatively in the amplitude parameter a. At leading order, the eigenvalues are

\lambda 1,2 =\Omega \prime (u)\pm 
\sqrt{} 
\rho 0f \prime \prime (\rho 0)\Omega \prime \prime (u) ,(3.13)

\lambda 3 = \lambda 4 =
\partial \omega 0

\partial k
.(3.14)

Here, \lambda 1,2 are simple eigenvalues depending on the mean variables \=\rho = \rho 0 + \scrO (a2)
and u (the same as in (3.4)). The double eigenvalue is degenerate, with geometric
multiplicity one. Then, \scrO (a2) perturbation of the eigenvalue problem will lead to
\scrO (a2) corrections to \lambda 1,2 and an \scrO (a) bifurcation of the double eigenvalue \lambda 3 = \lambda 4.
We are interested in the \scrO (a) bifurcation of the double eigenvalue. Consequently, we
can avoid a full perturbative analysis of the 4 \times 4 eigenvalue problem in favor of a
simpler, more direct approach that utilizes the structure of the modulation equations
themselves. That is, we assume that the variations in the mean (\=\rho ,u) are induced
solely by the finite amplitude wave while the leading order mean is taken to be constant
[82, 39]. We make the ansatz

\rho 0 =R0 + a2R2(k), u=U0 + a2U2(k),(3.15)

where (R0,U0) is the constant background and (R2,U2) is the induced mean. The
latter can be determined by inserting (3.15) into (3.10a) and (3.10c), and recalling
(3.9) and (3.11). The leading-order terms vanish, while the \scrO (a2) terms yield
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WHITHAM THEORY FOR GENERALIZED NLS EQUATIONS 1349

\bigl( 
R2 + 1+B2

1

\bigr) 
T
+ (\Omega \prime (U0)R2 +\Omega \prime \prime (U0)R0U2 +\scrQ +,0)X = 0 ,(3.16a)

U2,T + (f \prime \prime (R0)R2 +\Omega \prime (U0)U2 + \gamma 2)X = 0 ,(3.16b)

where \scrQ +,0 =\scrQ +(R0,U0).
As a consequence of the conservation of waves (2.14b) in the linear regime

\omega \rightarrow \omega 0, for any differentiable function F (k(X,T )), the conservation law

(F (k))T + (\omega 0,kF (k))X = 0(3.17)

is satisfied. Comparing (3.15)--(3.17) with F = R2 + 1+B and F = U2, we arrive at
the algebraic system for the induced mean\biggl[ 

\Omega \prime (U0) - \omega 0,k \Omega \prime \prime (U0)R0

f \prime \prime (R0) \Omega \prime (U0) - \omega 0,k

\biggr] \biggl[ 
R2

U2

\biggr] 
=

\biggl[ 
\omega 0,k(1 +B2

1) - \scrQ +,0

 - \gamma 2

\biggr] 
,

whose solution is\biggl[ 
R2

U2

\biggr] 
=

1

\Delta 

\biggl[ 
(\omega 0,k  - \Omega \prime (U0))

\bigl( 
\scrQ +,0  - (1 +B2

1)
\bigr) 
+\Omega \prime \prime (U0)R0\gamma 2

(\omega 0,k  - \Omega \prime (U0))\gamma 2  - f \prime \prime (R0)
\bigl( 
\scrQ +,0  - (1 +B2

1)
\bigr) \biggr] ,(3.18)

with determinant

\Delta = (\omega 0,k  - \Omega \prime (U0))
2  - R0f

\prime \prime (R0)\Omega 
\prime \prime (U0) .(3.19)

The nonlinear frequency shift is obtained by expanding

\omega 0(R0 + a2R2,U0 + a2U2) = \omega 0(R0,U0) + a2\~\omega 2 +\scrO (a4),

where

\~\omega 2(k) = \omega 2(R0,U0) + [R2(k),U2(k)] \cdot \nabla \rho 0,u\omega 0| \rho 0=R0,u=U0
,(3.20)

and \omega 2 is given in (3.9b). Incorporating the nonlinear frequency shift (3.20) into the
modulation equations (3.10a) and (3.10d) results in the modulation system

aT + \omega 0,kaX +
1

2
\omega 0,kkakX = 0, kT + \omega 0,kkX + 2a\~\omega 2(k)aX = 0.(3.21)

The characteristic velocities of (3.21) include the sought-for perturbations of the de-
generate, double eigenvalue (3.14). Then, the characteristic velocities of the weakly
nonlinear modulation system (3.10) are

\lambda 1,2 =\Omega \prime (u)\pm 
\sqrt{} 
\rho 0f \prime \prime (\rho 0)\Omega \prime \prime (u) +\scrO (a2) ,(3.22a)

\lambda 3,4 = \omega 0,k \pm a
\sqrt{} 
\omega 0,kk\~\omega 2 +\scrO (a2) .(3.22b)
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1350 PATRICK SPRENGER, MARK A. HOEFER, AND BOAZ ILAN

3.5. Generalized MI for small amplitude two-phase wavetrains. For the
purposes of this discussion, we assume that the dispersionless system is hyperbolic,
i.e., \lambda 1,2 are real. We further assume that the two-phase wavetrain does not experience
exponential growth or decay when subject to linear perturbations, meaning that \omega 0

is real-valued. Under these assumptions, the only mechanism that remains to change
the type of the modulation equations is a change of the second-phase MI index

\Delta SPMI = sgn(\omega 0,kk\~\omega 2) .(3.23)

This index provides a generalized criterion for MI of two-phase waves. When \Delta SPMI =
1, the characteristic velocities \lambda 3,4 are real. When \Delta CPMI =\Delta SPMI = 1, the modula-
tion system (3.10) is hyperbolic. When \Delta SPMI = - 1, \lambda 3,4 are complex valued and, if
\Delta CPMI = 1, the modulation equations are of mixed hyperbolic-elliptic type.

By examining \Delta SPMI, we can identify potential mechanisms for a change in type
of the modulation system when \omega 0,kk\~\omega 2 is zero or singular. These include

\bullet zero linear dispersion curvature: \omega 0,kk = 0;
\bullet four-wave mixing: \omega 0,kk \rightarrow \infty when \Omega (u + 2k)  - 2\Omega (u) + \Omega (u  - 2k) = 0

(\scrM 2 = 0);
\bullet two phase resonance: \Delta = 0 in (3.18) and (3.19) when \omega 0,k = \Omega \prime (u) \pm \sqrt{} 

\=\rho 0f \prime \prime (\=\rho )\Omega \prime \prime (u);
\bullet second-harmonic resonance: A2, B2 \rightarrow \infty in (3.8) when 2\omega 0(k, \=\rho ,u) = \omega 0(2k,

\=\rho ,u) (\scrD = 0 in (3.9c));
\bullet other nonlinear mechanisms: \~\omega 2 = 0.

4. Examples. In this section, we analyze the second-phase index \Delta SPMI (3.23)
for some specific FDNLS equations as a way to predict the onset of instability. The
FDNLS equation (1.1) is considered, primarily with cubic nonlinearity f \prime (| \psi | 2) = | \psi | 2
and four distinct dispersion relations \Omega (k) corresponding to third- and fourth-order
dispersion as well as finite-depth water waves and discrete nonlinear lattices. We
consider normalized two-phase solutions (2.2) with \=\rho = | \scrU | 2 = 1. Since our objective
is to identify instabilities using \Delta SPMI, we only consider modulationally stable one-
phase carrier wavenumbers, i.e., u for which \Delta CPMI = 1 (3.6). We point out that
previous studies on MI in generalized KdVmodels demonstrated significant qualitative
differences in the nature of MI as the power of the nonlinearity grows [35].

In sections 4.1 and 4.2, we numerically compute two-phase solutions of the FDNLS
equation (1.1) of the form (2.2) by solving the nonlinear eigenvalue problem

 - i\omega \scrU + \gamma \scrU \theta 2 = | \scrU | 2\scrU +\Omega (u - ik\partial \theta 2)\scrU ,(4.1)

using an iterative Newton-conjugate gradient algorithm for the Fourier coefficients of
\scrU [83, 84], initialized with the weakly nonlinear approximation (3.8). Direct simula-
tions of the FDNLS equation (1.1) with small additive noise (1.12) with wavenumbers
\xi \in (u  - k,u + k) are then performed using a fourth-order split-step scheme [85]
with initial condition the two-phase solution, similar to the numerical simulations of
perturbed solutions in section 1.2.

4.1. NLS with third-order dispersion. The cubic NLS equation with third-
order dispersion (NLS3) is

i\psi t =
i

6
\psi xxx + | \psi | 2\psi .(4.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 3. Example linear resonances for the NLS3 equation (4.2): (a) interbranch resonance
c+(k1) = c - (k2) of the fast k1 = 1 (red) and slow k2 \approx 2.789 (blue) dispersion branches for u= 0.25;
(b) intrabranch resonance c - (k1) = c - (k2) for k1 = 0.25, k2 \approx 0.76, u= 1.5.

The linear dispersion relation is\biggl( 
\omega 0  - 

1

2
u2k - k3

6

\biggr) 2

= uk2
\bigl( 
4 + uk2

\bigr) 
.(4.3)

When u \geq 0 , \omega 
(\pm )
0 \in \BbbR so that the one-phase solution (2.1) is modulationally sta-

ble. The two branches of the dispersion relation correspond to the phase veloci-
ties c\pm (k) = \omega 

(\pm )
0 (k)/k subject to interbranch (c+(k1) = c - (k2)) and intrabranch

(c+(k1) = c+(k2)) linear resonances. Despite being linear resonances, they can be
induced by nonlinearity, as demonstrated below. Figures 3(a) and 3(b) depict inter-
and intrabranch resonances, respectively.

We evaluate \Delta SPMI (3.23) for (4.2) and plot the results in Figure 4(a), (b).
The grayscale colormap depicts the imaginary part of the Whitham velocities (3.22),
Im(

\sqrt{} 
\~\omega 2\omega 0,kk) on a log scale, taken as a quantitative measure of the strength of

the instability, on the order of the exponential growth rate. Figures 4(a) and (b)
depict \Delta SPMI for the fast (+) and slow ( - ) branches, respectively, of two-phase solu-
tions (3.8) as a function of u and k. Grayscale regions correspond to negative index
\Delta SPMI = - 1 and unstable two-phase solutions. White regions correspond to positive
index \Delta SPMI = 1. The pink regions in Figure 4(a) indicate the existence of either an
inter- or intrabranch resonant wave with \Delta SPMI = - 1.

In Figures 4(a), (b), 5(a), (b), 7, and 8 depicting \Delta SPMI, the solid curves identify
one of the instability mechanisms listed in section 3.5. An orange curve identifies a
two-phase wave resonance. Blue denotes a second-harmonic resonance. Green indi-
cates zero-dispersion curvature whereas black connotes other nonlinear mechanisms.
In this example there are no changes in sign of the \Delta SPMI due to 4-wave mixing. Fig-
ure 4(a) predicts that the fast two-phase solution (3.8) is unstable for all wavenumber
pairs (u,k) due to either second-harmonic resonance, other nonlinear mechanisms, or
the secondary instability of a linearly resonant mode. Figure 4(b) predicts bands of
unstable, slow two-phase solutions due to all available mechanisms.

To test the accuracy of our predictions, we compare them to the numerical evo-
lution of (4.2) for several computed two-phase solutions. Figure 4(c) shows the wave
power | \psi (x, t)| 2 and magnitude of the Fourier transform | \widehat \psi (\xi , t)| at time t = 2500
corresponding to the perturbed, fast two-phase solution with (u,k) = (\pi /10, \pi /3) and
a= 0.05 identified in Figure 4(a). For these parameters, there is an interbranch res-
onant mode with wavenumber kres \approx 2.789. Since the slow two-phase solution with
(u,k) = (\pi /10, kres) is predicted to be unstable, we can interpret the small amplitude,
shorter wavelength modulations of | \psi | 2 as caused by the slow growth of a resonant
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1352 PATRICK SPRENGER, MARK A. HOEFER, AND BOAZ ILAN

Fig. 4. Phase diagrams indicating the stability (white) or instability (grayscale) of small ampli-
tude, fast (a) and slow (b) two-phase solutions of the NLS3 equation (4.2). The grayscale indicates
the predicted strength of the instability. Pink regions indicate the presence of an unstable resonant
mode. (c)--(e) present the results of direct numerical simulations of the NLS3 equation. The upper

(lower) panels show the power | \psi (x, t)| 2 (spectral intensity | \widehat \psi (k, t)| ) in black after time integration.

The initial spectrum | \widehat \psi (k,0)| is shown in gray. Red lines identify u+ k\mathrm{r}\mathrm{e}\mathrm{s}.

mode. Indeed, the Fourier spectrum at t= 2500 shows a peak at k\approx u+kres indicated
by the red line that was not in the initial data (gray).

Figure 4(d) shows an example of an unstable mode at t = 1500. In the long
time evolution, modulations of | \psi | 2 are visible in Figure 4(d) due to the two-phase

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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WHITHAM THEORY FOR GENERALIZED NLS EQUATIONS 1353

instability. The spectrum reveals the emergent side-bands, which are indicated by the
peaks at u+ nk for n\in \BbbZ .

Figure 4(e) is an example of an instability arising due to a longer wave intrabranch
resonance. We evolve a perturbed, slow two-phase solution with (u,k) = (\pi /2,8\pi /11)
and a = 0.001 to t = 1000. There is an intrabranch resonant mode at kres \approx 1.078.
In this case, the initial two-phase solution is predicted to be stable, while the res-
onant mode is predicted to be unstable. The power in Figure 4(e) exhibits strong
modulations with wavelength longer than 2\pi /k = 11/4. The spectrum reveals wide
bands centered at u + kres and its harmonics. These bands' amplitude grows with
time. Despite this growth, the spectral peaks of the initial two-phase solution remain
relatively unchanged on the time scale of the numerical experiment.

4.2. NLS with fourth-order dispersion. Consider the cubic NLS equation
with fourth-order dispersion (NLS4)

i\psi t =
1

24
\psi xxxx + | \psi | 2\psi .(4.4)

This equation exhibits no classical MI since \Delta CPMI = 1 in (3.6). The linear dispersion
relation \omega 0 satisfies\bigl( 

6\omega 0  - uk(u2 + k2)
\bigr) 2

=
1

16
k2
\bigl( 
k2 + 6u2

\bigr) \bigl( 
k4 + 6k2u2 + 48

\bigr) 
(4.5)

so that \omega 0 is real-valued for all u,k \in \BbbR .
Figures 5(a) and (b) depict the stability of fast and slow, respectively, weakly non-

linear two-phase solutions according to \Delta SPMI. We focus on the gray islands bounded
by the black curves. These regions are particularly notable since their boundaries
correspond to sign changes in the modified nonlinear frequency shift, \~\omega 2. We thor-
oughly probe this region by computing two-phase solutions with a = 0.075, while
varying u and k (red and blue dots in the inset of Figure 5(a)). Perturbed, fast two-
phase solutions that numerically exhibit side-band growth by t = 2500 are indicated
by red circles. Those that do not are indicated by blue circles. The island where
\Delta SPMI =  - 1 accurately predicts the instability of two-phase wavetrains, an example
of which is shown in Figure 5(c) at t = 2500 for the perturbed two-phase solution
with (u,k) = ( - 0.4,1.6). The power undergoes significant long-wavelength modula-
tions from its initial profile. This is reflected in the spectral intensity by the large
side-bands about the harmonics at wavenumbers \xi = u+ nk, n\in \BbbZ .

Figure 5(d) shows an example of a stable, fast two-phase solution with (u,k) =
( - 0.4,1) at t= 2500. Neither the power | \psi | 2 nor the amplitude spectrum | \widehat \psi | indicates
any sign of instability.

The regions of parameter space that correspond to the unstable two-phase solu-
tions are bounded by curves where the mechanism leading to instability is nonlinear.
To briefly explore this further, we modify the NLS4 equation to include an additional,
quintic nonlinear term. The cubic-qunitic fourth-order NLS equation (CQNLS4) is

i\psi t = - 1

24
\psi xxxx + | \psi | 2\psi + \beta | \psi | 4\psi 

with the parameter \beta \geq 0 for modulationally stable plane waves. To illustrate the
significance of higher-order nonlinear effects, we compute \Delta SPMI with \=\rho = 1. The
SPMI index is reported for two values of \beta = 0.01 and \beta = 0.2 in Figures 6(a) and (b).
For these examples, the fast branch of the dispersion relation is chosen to contrast
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1354 PATRICK SPRENGER, MARK A. HOEFER, AND BOAZ ILAN

Fig. 5. Phase diagrams and numerical simulations of NLS4 two-phase solution stability. Dots
in the inset of (a) correspond to solutions that are stable (blue) or unstable (red) in direct numerical
simulations. See Figure 4 and main text for details.

with the diagram in Figure 5(a). The examples provided in Figure 6 demonstrate the
sensitivity of the instability on the details of the nonlinear term. More work is needed
to understand how the second phase MI will manifest, as it has been observed in
generalized KdV equations that the inclusion of higher-order nonlinear terms (beyond
those in the mKdV equation) lead to fundamental changes in the nature of MI in both
the spectral and physical domains [34, 35].

4.3. A full-dispersion model of water waves. Weakly nonlinear, nearly
monochromatic wavetrains in finite-depth water waves can be modeled by the cu-
bic NLS equation [2]

iAt = - 1

2

d2\Omega ww,0

d\kappa 2
Axx + \nu 0| A| 2A ,(4.6)

where \Omega ww(\kappa )
2 = \kappa tanh\kappa , \Omega ww,0 = \Omega ww(\kappa 0), and \nu 0 = \nu 0(\kappa 0) is a real constant.

The NLS equation (4.6) is a narrow-band model, obtained by Taylor expanding the
water waves linear dispersion relation \Omega ww about the carrier wavenumber \kappa 0. More
accurate models retain higher-order asymptotic terms [37]. We propose the following,
analogous full-dispersion model of finite-depth water waves:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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WHITHAM THEORY FOR GENERALIZED NLS EQUATIONS 1355

Fig. 6. Phase diagrams of CQNLS4 two-phase solution stability with (a) \beta = 0.01 and (b)
\beta = 0.2. See Figure 4 and main text for details.

i\psi t = - 
\Bigl( \widetilde \Omega ww(\kappa 0  - i\partial x) - \Omega ww,0 + icg0,ww\partial x

\Bigr) 
\psi + sgn \nu 0 | \psi | 2\psi ,(4.7)

where \Omega ww,0 and cg0,ww are the dispersion and group velocities evaluated at \kappa 0.
A similar model was considered by Trulsen and Dysthe, [77] in deep water where

the FDNLS equation (1.1) has dispersion \Omega (\kappa ) =
\surd 
\kappa . More recently, Craig, Guyenne,

and Sulem [29] derived a full-dispersion model of water waves that includes some of
the higher-order nonlinear terms from the Dysthe equation in deep water.

To simplify the presentation, we set \kappa 0 = 0, which is accomplished without loss
of generality by redefining the carrier wavenumber as u\rightarrow u+\kappa 0. To ensure that the
coefficient of the nonlinear term is positive we require u< 1.363 so that the Benjamin--
Feir instability [13] does not occur. A calculation reveals that the one-phase solutions
are modulationally unstable for u< 0 (\Delta CPMI = 1). Therefore, we omit this parameter
regime and hence, we consider 0\leq u< 1.363.

Figure 7 presents the stability regions for weakly nonlinear, fast (a) and slow
(b) two-phase wavetrains. The structure of the stability phase-plane is qualitatively
similar to that of the NLS3 model with third-order dispersion. In the fast branch, there
are high-frequency resonant modes that co-propagate on the slow dispersion branch,
so the resonance mechanism is of the same nature as in Figure 3(a). Evaluation of
\Delta SPMI at the high-frequency resonant modes indicates that an instability is present,
and one can observe this instability in numerical simulations. In large regions of
parameter space, the slow two-phase waves are stable, while narrow (pink) regions
exhibit unstable resonant modes of the type illustrated in Figure 3(b).

4.4. Discrete NLS. The defocusing, discrete NLS (DNLS) equation

i\psi n,t = - 1

2
(\psi n - 1  - 2\psi n +\psi n+1) + | \psi n| 2\psi n(4.8)

has been used, for example, to model the evolution of light in long, semiconduc-
tor waveguide arrays [66]. Significant attention has been given to the study of dark
solitary wave solutions and their stability [59, 53]. To study two-phase solutions
of the DNLS equation, we introduce the interpolating function \psi (x, t) such that
\psi (n, t) = \psi n(t). The shifting operators in the discrete setting can be understood
in a distributional sense,
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1356 PATRICK SPRENGER, MARK A. HOEFER, AND BOAZ ILAN

Fig. 7. Phase diagrams of two-phase solution stability for the water waves model (4.7). See
Figure 4 and main text for details.

\psi n\pm 1 =\psi (n\pm 1, t) =

\int 
\BbbR 
\delta (x - n\mp 1)\psi (x, t)dx .(4.9)

The action of the advance-delay operator in the FDNLS model (1.1) can be represented
by its Fourier transform as

\scrF \{ \widetilde \Omega ( - i\partial x)\psi \} =\scrF \{ \psi (n - 1, t) - 2\psi (n, t) +\psi (n+ 1, t)\} 
= 2(cos(\xi ) - 1) \widehat \psi (\xi , t),

where \widehat \psi is the Fourier transform of the interpolating function \psi . Thus, we define the
continuous DNLS model as

i\psi t = \widetilde \Omega ( - i\partial x)\psi + | \psi | 2\psi (4.10)

with \Omega (\xi ) = 1 - cos(\xi ), whose solution is an interpolant of the solution of the DNLS
equation (4.8). Here, the admissible range of the wavenumber is | u| \leq \pi /2. The
classical MI index (3.6) is \Delta CPMI = cos(u). Hence, the admissible one-phase solutions
are linearly stable with respect to periodic perturbations of any wavenumber.2

Figure 8 presents the stability diagrams for fast and slow two-phase solutions of
(4.10). The slow branch resembles that of a portion of the NLS4 model, Figure 5,
though a similar region containing instability islands that we explored in section 4.2
is not permitted in the band-limited region of the discrete system.

5. Discussion and conclusions. In this manuscript we derived the Whitham
modulation equations (2.11)--(2.14b) for the FDNLS (1.1). These equations are ob-
tained by utilizing a multiscale approach, assuming the existence of two-phase solu-
tions, and averaging the conservation laws of the FDNLS equation over the manifold
of two-phase solutions. For weak nonlinearity, the modulation equations' type (hyper-
bolic/elliptic) is used to assess the MI of two-phase solutions. For the classical cubic
NLS equation, the MI of one- and two-phase wavetrains is directly related. If a one-
phase solution is modulationally stable (unstable) to long wavelength perturbations,

2Since this model is a continuum approximation of a discrete system, we may only consider
perturbations that are band-limited. Therefore, they do not oscillate on scales below the lattice
spacing. In the normalization utilized here, the wavenumber of perturbation, k, satisfies | k| <\pi .
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WHITHAM THEORY FOR GENERALIZED NLS EQUATIONS 1357

Fig. 8. Phase diagrams of two-phase solution stability for the DNLS model (4.10). See Figure 4
and main text for details.

then weakly nonlinear two-phase solutions with the same carrier wavenumber are also
modulationally stable (unstable). One goal of this study was to identify scenarios in
which the one-phase carrier wave is stable, but unstable when modulated with a finite
amplitude second phase.

We obtain the characteristic velocities perturbatively and identify two distinct in-
dices that determine the reality or complexity of these velocities. One index (equation
(3.6)) corresponds to the known classical or generalized MI criterion. The new index
(equation (3.23)) determines the MI of two-phase solutions. This index depends on the
nonlinear potential f and the linear dispersion function \Omega (\xi ) that define the FDNLS
equation as well as the three parameters of the weakly nonlinear two-phase wavetrain:
mean density \=\rho , carrier-phase wavenumber, u, and second-phase wavenumber, k.

The derivation of the modulation equations and the two-phase index are ob-
tained under general conditions. The stability predictions are determined and favor-
ably compared with numerical simulations for the FDNLS equation with third- and
fourth-order dispersion. Secondary instabilities were also identified, both theoretically
and numerically, resulting from linear inter- and intradispersion branch resonances.
Nonlinearity serves to couple linearly resonant modes with different wavenumbers
and the predicted instability of corresponding resonant weakly nonlinear two-phase
solutions with the same carrier wavenumber and the resonant wavenumber leads to
instability of the original two-phase solutions. This phenomenon is studied in the
FDNLS equation with third-order dispersion, which exhibits qualitatively similar fea-
tures with an FDNLS model of water waves. Understanding the physical implications
of these predictions is reserved for future work.

We posit that the FDNLS model provides insight into the nature of high-frequency
instabilities. We note that high-frequency instabilities were observed in numerical
simulations of water waves [31] and have recently been analyzed via asymptotics and
rigorous spectral methods [30, 51].

The generalized Whitham modulation equations can also be used to study solu-
tions of initial value problems. In NLS-type equations with higher-order dispersion,
distinct DSW structures emerge that have been identified with resonances [26]. These
DSWs are particular in that they may be described in terms of a shock solution of
the Whitham modulation equations, an area of recent interest in nonlinear dispersive
wave equations with higher-order dispersion [49, 73, 9, 8].

A novel application of the results in this manuscript are in the modulation of two-
phase solutions in discrete systems, which is accomplished upon casting the advance-
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1358 PATRICK SPRENGER, MARK A. HOEFER, AND BOAZ ILAN

delay operators in these systems as a pseudodifferential operator. A promising direc-
tion of research is to utilize the Whitham modulation theory developed here to study
DSW structures that evolve from step-like initial data in FDNLS models, such as the
DNLS equation.
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