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ABSTRACT  

We present a computational framework for optimizing nonimaging solar concentrators. Our approach is to represent the 
concentrator’s shape as a polygon, use ray tracing to compute the flux at the receiver, and employ Generalized Pattern 
Search (GPS) on the polygon’s vertices. Many shape optimization techniques use gradients to seek a direction of 
steepest ascent or descent. For solar concentrators, these approaches can easily get trapped in local minima. In contrast, 
GPS is a derivative-free method that seeks a global optimum on suitable meshes, without computing gradients. This 
helps to avoid getting trapped in local minima. Results for 2D concentrators show that our algorithm can converge to the 
ideal concentrator's shape as the number of polygon vertices increases. We also show that when the number of vertices is 
small and fixed, the optimal polygon can differ significantly from the polygon that would be obtained using a uniform 
collocation of the ideal shape. This approach could lead to a simple, accurate, and fast design method, and improve the 
performance and lower the fabrication costs of nonimaging concentrators for solar and thermal applications.  
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1. INTRODUCTION  
1.1 Nonimaging solar concentrators 

Nonimaging concentrators are designed to transfer as much light as possible from a source to a receiver1. The source and 
receiver can be points or extended objects, planar or non-planar. Nonimaging solar concentrators have been applied to 
solar-PV and solar-thermal applications. In addition, nonimaging optics is also used for illumination engineering3. For 
solar concentrators, the task of the optics is to allow for the widest acceptance angle resulting in the greatest collection of 
light.  

There are few guiding principles for designing nonimaging concentrators, including the conservation of étendue and the 
edge-ray principle1. For two-dimensional (2D) concentrators, which can be used to design axially-symmetric 3D 
concentrators, there purely-analytical design methods, including the method of strings, the flow-line method1,2. However, 
for 3D concentrators, there is no theory or analytical technique for finding the optimal design. 

Sophisticated computational approaches have been developed for these problems, such as the Simultaneous Multiple 
Surface (SMS) method4 and the generalized functional method5, which have been applied to design various 3D freeform 
nonimaging optics. Earlier, Ashdown7 used ray-tracing coupled with genetic algorithms to design the reflector geometry 
of illuminating devices. Muschaweck et al. optimized over a family of parametric curves with a single or few degrees of 
freedom8. Daun et al.9 applied gradient-based optimization techniques for designing radiant enclosures. Marston et al.10 
extended and modified this approach for designing 2D solar concentrators using Monte Carlo ray tracing and the Kiefer-
Wolfowitz stochastic gradient-descent optimization method. Rukolaine10 described a gradient-based technique to be used 
for determining optimal geometry for a 2D radiant enclosure problem. However, gradient-descent methods tend to get 
trapped in local minima, which can be far from optimal. Moreover, any local change in the shape of an optic will yield a 
large divergence of the light as it propagates. Therefore, gradients of the light flux at the receiver (for that light that 
reaches the receiver) give almost no meaningful information about the changes in the local shape of the concentrator. 
For this reason, we choose a different class of optimization techniques. 

Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XV,
edited by Roland Winston, Eli Yablonovitch, Proc. of SPIE Vol. 10758, 107580L

© 2018 SPIE · CCC code: 0277-786X/18/$18 · doi: 10.1117/12.2503895

Proc. of SPIE Vol. 10758  107580L-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/29/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

2. ALGORITHMS 
We seek to develop a computational framework that is relatively simple, accurate, fast, flexible and stable. To take a first 
step, we develop this approach for 2D concentrators. We represent the concentrator’s shape (its top and bottom) as 
polygons and use deterministic ray-tracing. Each ray that reaches the concentrator is reflected from a perfect mirror and 
continues to propagate until it either reaches the receiver (where it is perfectly absorbed) or rejected, i.e., exists from the 
aperture. The objective function is the relative number of rays that reaches the receiver, which is proportional to the flux 
at the receiver. To find the optimal positions of the polygons' vertices, we to use a derivative-free optimization technique 
known as pattern search. 

2.1 Choosing the number of vertices and rays 

Optimization techniques work better when there are fewer degrees of freedom. For this reason, we seed the algorithm 
(the initial shape of the concentrator) with a low-order polygon and increase the number of vertices as the shape 
converges. For simplicity, we describe the process for the top segment. We seed the algorithm with a 2-edge polygon, 
i.e., a single vertex at the top, which is chosen at the center of the straight line that connects the top edges of the aperture 
and receiver. The pattern search algorithm (details below) seeks an optimal position for this vertex. When pattern search 
converges to a certain shape, the number of vertices is increased and a new seed shape for the next iterate is obtained by 
interpolation of the previous shape. The number of vertices is increased by two at each during the first few iterations and 
by 25% during advanced iterations. This conservative approach helps avoid getting stuck in local minima. For the 
interpolant, we use the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), which works well for preserving 
shapes12. 

For the ray tracing, the number of rays is increased with the number of polygonal edges, ௘ܰௗ௚௘௦. Specifically, we choose 
uniformly distributed points along the source with ௦ܰ௢௨௥௖௘௦ = ቒଷଶ ௘ܰௗ௚௘௦ቓ, where ۀ⋅ڿ stands for the ceiling function. At 
each source point, we choose the number of angles as ௔ܰ௡௚௟௘௦ = ௦ܰ௢௨௥௖௘௦, where the angles at each source point are 
uniformly distributed within the acceptance range (the directions that can enter the aperture). Therefore, the number of 
rays used in the ray-tracing for a trial shape scales as ௥ܰ௔௬௦ = ௦ܰ௢௨௥௖௘௦ ∗ ௔ܰ௡௚௟௘௦ ∝ ௘ܰௗ௚௘௦ଶ . In this way, as the algorithm 
converges, the ray-tracing computation becomes more accurate. These choices yield a good trade-off between accuracy, 
speed, and stability.  

2.2 Generalized Pattern Search 

Pattern search is derivative-free optimization technique. A recent survey of such techniques can be found in [13]. 
Briefly, incumbent points (vertices in our problem) are polled from a prescribed mesh and a decision is made to update 
to an incumbent point when the objective function decreases (or increases). Then the mesh is contracted or expanded and 
the process repeats itself. The first technique of this type, called Coordinate Search, was developed by Fermi and 
Metropolis14. Hooke and Jeeves developed a more general approach15, which they coined "pattern search", also known as 
Generalized Pattern Search (GPS). Torczon and collaborators16-21 provided the first theoretical basis for pattern search, 
introduced the generating set search (GSS) class of algorithms, dynamic adaptation, and parallelization. Different 
algorithms differ on how they prescribe the mesh. GPS uses a positive basis of unit vectors. GSS resembles GPS, but 
adapts the mesh to account for linear constraints. These techniques are available in MATLAB, which we use. One 
polling method that works consistently well for our problems is GSS Positive Basis 2N.  

2.3 Convexity constraint 

Because the optimal shape is strictly convex, we try to enforce strict convexity. Specifically, let (ݔ௜,,  ௜) be the positionݕ
of the i'th vertex, where i=0 and ݅ = ௦ܰ௘௚௠௘௡௧௦ correspond to the top edges of the aperture and receiver, respectively. Let 
us denote the difference between successive vertices as (∆ݔ௜,, (௜ݕ∆ = ,,௜ݔ) (௜ݕ − ,,௜ିଵݔ)  ௜ିଵ). The shape of theݕ
concentrator is strictly convex if, and only if, all the determinants ݀௜ = ௜ݕ∆௜ିଵݔ∆ −  ,௜ିଵ are negative. To this endݕ∆௜ݔ∆
we define the constant ܿ = ଵଶ − ݈݈ܽ(݀௜ < 0), which returns −ଵଶ if the shape is convex and +ଵଶ otherwise. Convexity is a 
nonlinear constraint, which can be hard to enforce. Although convexity could be cast as an equality constraint, we find 
that it works better to cast it as an inequality constraint, i.e., ܿ < 0, using the Augmented Lagrangian Pattern Search 
method19. This "soft" enforcement approach means that the resulting shape has an incentive to be convex, but can 
deviate from this constraint.  
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3. RESULTS
3.1 Planar receiver 

The first problem we consider is when the source, receiver, and aperture are planar (line segments in 2D), which are 
parallel to each other. The aperture's position is chosen using the principle of conservation of étendue. The ideal 
concentrator is known and can be obtained using the string method. Specifically, the top portion of the ideal concentrator 
is a segment of an ellipse, whose foci are the bottom edges of the source and the receiver, and which passes through the 
top edges of the aperture and receiver. The bottom portion is obtained symmetrically.  

Video 1 shows the convergence of the algorithm to the ideal shape. The algorithm starts with straight lines connecting 
between the aperture and receiver. The process is stopped when the concentrator collects 97% of the rays, when the 
resulting polygon has 46 vertices and the ray-tracing uses 841 rays. For all practical purposes, the optimized shape is the 
same as the ideal one. This process takes 112 wall-clock seconds on a laptop computer. We have verified that this 
convergence remains stable when the various user-defined parameters (polling method, mesh expansion / contraction 
parameters, number of rays, etc.) are varied.  

Video 1. [planar_absorber_movie.mp4]. A concentrator for a planar receiver (line segment on the right side). The 
optimization algorithm converges to the ideal shape (blue curves), reaching 97% collection efficiency using 46 vertices. 
The wall-clock runtime (seconds) is shown. http://dx.doi.org/10.1117/12.2503895.1

3.2 Cylindrical receiver 

Non-planar absorbers can have various advantages over planar absorbers for solar concentration1. Here we consider a 
cylindrical trough design, where the 2D cross section of the receiver is a circle. The optimal design, which can be found 
using the string method1,21, consists of an involute (see the figure in Video 2). The section of the involute to the right of 
the receiver is an involute of the receiver's circle, which has a cusp point at the right-edge of this circle. That section is 
kept fixed during the optimization process. The optimization algorithm is applied to the top part of the concentrator. 
Future work will develop a method to optimize the entire shape. As in the previous example, the algorithm starts with 
straight lines connecting between the aperture and the beginning of the circle's involute. The algorithm converges to an 
almost ideal shape, reaching 95% collection efficiency using 74 vertices. 
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46 vertices, 112 seconds, collected 97%
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Video 2. [cylindrical_absorber_movie.mp4]. A concentrator for a cylindrical receiver (black circle). The section (in 
magenta) to the right of the receiver is kept fixed. The optimization algorithm is applied to the top segment and 
reaches 95% collection efficiency using 74 vertices. http://dx.doi.org/10.1117/12.2503895.2 

3.3 Low-degree polygonal concentrator 

From a manufacturing perspective, it is easier and cheaper to make a concentrator whose shape is a low-degree polygon 
than any freeform curve. This raises the question: what is the optimal low-degree polygonal concentrator? A plausible, 
intuitive answer is to consider the ideal shape and collocate uniformly-spaced vertices on it. We call this the ideal-
collocation design. Theoretically, as the number of vertices is increased, the resulting concentrator would approach the 
ideal one. However, there is no reason why the ideal-collocation design is optimal among the class of all low-degree 
polygons.  

To investigate this, we consider the simplest case: a single vertex polygon. We seed the computational algorithm (using 
100 source points for accuracy) with the ideal-collocation design, i.e., a vertex point at the center of the ideal (ellipse) 
curve. The algorithm converges to an optimized design. Figure 1 shows this optimized design, which yields 88% 
collection, compared with 77% using the ideal-collocation design. It is remarkable that the optimized design is quite 
different from the ideal-collocation design: its vertex neither lies on the ideal curve (part of an ellipse) nor is it equally 
distant between the aperture and receiver. We have tested that this optimized shape is stable by using different seeds and 
algorithmic parameters. For this reason, we believe that it is optimal. This shows that the optimized design is 
significantly better than the ideal-collocation design. 

74 vertices, 58 seconds, collected 95.1%
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Figure 1. The optimized concentrator design using a single-vertex polygon (red) yields 88% collection. In comparison, the 
ideal-collocation design (black), which is obtained by placing the vertex at the center point of the ideal shape (blue), yields 
77% collection. 

4. CONCLUSIONS 
Computational optimization using pattern search is a viable approach for designing optimal nonimaging solar 
concentrators.  

5. ACKNOWLEDGEMENTS 
The authors would like to thank Roland Winston and Lun Jiang for introducing us to the field of nonimaging optics and 
for many stimulating discussions. 

REFERENCES 

[1] Winston, R., Miñano J. C., and Benítz P., [Nonimaging Optics], Elsevier Academic Press (2005). 
[2] Winston, R. and Jiang, L., How the Hilbert integral theorem inspired flow lines. International Society for Optics 

and Photonics, Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XIV, 10379: 
1037903 (2017). 

[3] Chaves, J., [Introduction to nonimaging optics]. CRC press (2008). 
[4] Gimenez-Benitez, P., et al., Simultaneous multiple surface optical design method in three dimensions, Opt. Eng. 

43(7): 1489-1503 (2004). 
[5] Bortz, J. and Shatz, N., Generalized functional method of nonimaging optical design. Intl. Soc. Opt. Phot., 

Nonimaging Optics and Efficient Illumination Systems III 6338:633805 (2006). 
[6] Ashdown, I., Non-Imaging Optics Design Using Genetic Algorithms, J. IESNA, 23, 12–21 (1994). 
[7] Muschaweck, J., Spirkl, W., Timinger, A., Benz, N., Dörfler, M., Gut, M., and Kose, E., Optimized Reflectors for 

Non-Tracking Solar Collectors With  Tubular Absorbers, Sol. Energy, 68, 151–159 (2000). 
[8] Daun, K., Morton, D. P., and Howell, J. R., Geometric Optimization of  Radiant Enclosures Containing Specular 

Surfaces,” ASME J. Heat Trans., 125, 845–851 (2003). 
[9] Marston, A.J., Daun, K. J. and Collins, M. R., Geometric optimization of concentrating solar collectors using 

Monte Carlo simulation. J. Sol. Energy Eng., 132(4), 041002 (2010). 
[10] Rukolaine, S.A., The shape gradient of the least-squares objective functional in optimal shape design problems of 

radiative heat transfer. J. Quant. Spec. Rad. Trans., 111(16), 2390-2404 (2010). 
[11] Yang, L. and Huiyan, Z., Shape preserving piecewise cubic interpolation. Appl. Math., 11(4), 419-424 (1996). 
[12] Audet, C. and Hare, W., [Derivative-free and blackbox optimization]. Springer (2017).  

Proc. of SPIE Vol. 10758  107580L-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/29/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

[13] Fermi, E., Metropolis, N.: Numerical solution of a minimum problem. Los Alamos Unclassified Report LA–1492, 
Los Alamos National Laboratory (1952). 

[14] Hooke, R. and Jeeves, T. A., ``Direct Search'' Solution of Numerical and Statistical Problems. J. ACM, 8(2), 212-
229 (1961). 

[15] Torczon, V., On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1-25 (1997). 
[16] Lewis, R.M., Torczon, V., Pattern search algorithms for bound constrained minimization.  SIAM J. Optim. 9(4), 

1082–1099 (1999). 
[17] Hough, P. D., Kolda, T. G. and Torczon, V. J., Asynchronous parallel pattern search for nonlinear optimization. 

SIAM J. Sci. Comp., 23(1), 134-156 (2001). 
[18] Lewis, R. M., Torczon, V., A globally convergent augmented Lagrangian pattern search algorithm for 

optimization with general constraints and simple bounds. SIAM J. Optim. 12(4), 1075–1089 (2002). 
[19] Kolda, T. G., Lewis, R. M., Torczon, V., Optimization by direct search: New perspectives on some classical and 

modern methods. SIAM Rev. 45(3), 385–482 (2003). 
[20] Kolda, T. G., Lewis, R. M., Torczon, V., A generating set direct search augmented Lagrangian algorithm for 

optimization with a combination of general and linear constraints. Technical Report SAND2006-5315, Sandia 
National Laboratories (2006). 

[21] Rabl, A., Solar concentrators with maximal concentration for cylindrical absorbers. Appl. Opt., 15(7), 1871-1873 
(1976). 

Proc. of SPIE Vol. 10758  107580L-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/29/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


